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AGENDA

 Exponential Moving Averages
• Why lag is important
• How to compute the EMA constant to produce a given lag

 Higher order filters
• Let your computer do a superior job of smoothing

 Essence of Predictive Filters
 Linear Kalman Filters
 Nonlinear Kalman Filters
 Theoretically Optimum Predictive Filters
 Zero Lag smoothing
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Fundamental Concept
of Predictive Filters

 In the trend mode price difference is directly 
related to time lag

 Procedure to generate a predictive line:
• Take an EMA of price (better, a 3 Pole filter)
• Take the difference ( delta) between the price and its EMA
• Form the predictor by adding delta to the price

– equivalent to adding 2*delta to EMA
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A Simple
Predictive Trading System

 Rules:
• Buy when Predictor crosses EMA from bottom to top
• Sell when Predictor crosses EMA from top to bottom

 Usually produces too many whipsaws to be practical
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Secrets of Predictive Filters

 All averages lag (and smooth)
 All differences lead (and are more noisy)
 The objective of filters is to eliminate the 

unwanted frequency components
 The range of trading frequencies makes a 

single filter approach impractical
 A better approach divides the market into two 

modes
• Cycle Mode
• Trend Mode

– A Trend can be a piece of a longer cycle
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Simple and Exponential
Moving Averages

 EMA constant is usually related to the length of an SMA
• “Filter Price Data”, J.K. Hutson, TASAC Vol. 2, page 102

• The equation is  = 2 / (Length +1)

 Only delay and amplitude smoothing are important
• Delay is the most important criteria for traders
• An EMA has superior rejection for a given delay
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Relating Lag
to the EMA Constant

 An EMA is calculated as:
g(z) = *f(z) + (1 -  )*g(z - 1)

where g() is the output
f() is the input
z is the incrementing variable

 Assume the following for a trend mode
• f() increments by 1 for each step of z

– has a value of “i” on the “i th” day
• k is the output lag
i - k =  *i + (1 - )*(i - k - 1)

=  *i + (i - k) - 1 -  *i +  *(k + 1)
0 =  *(k + 1) - 1

Then  k = 1/ -1        OR    = 1/(k + 1)
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Relationship
of Lag and EMA Constant

 k (Lag)
.5 1
.4 1.5
.3 2.33
.25 3
.2 4
.1 9
.05 19
 Small  cannot be used for short term 

analysis due to excessive lag
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EMA is a Low Pass Filter

g(z) = *f(z) + (1 - )*g(z - 1)
Use Z Transform notation (unit lag = 1/z)
g =  *f + (1 - )*g/z
Solving the algebra:  g =  *f*z / (z - (1 - ))
 Output is related to input by a first order 

polynomial
 Called 1 Pole filter because response goes to 

infinity when  z = 1 - 
 Higher order polynomials produce better filtering

• Second order:  g = kf / (z2 + az + b)
• Third order:      g = kf / (z3 + az2 + bz +c)



SLIDE 10

Higher Order Filters
Give Better Filtering

Smoothing increases with filter order
High Frequencies (short cycles) are more sharply rejected
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Higher Order Filter
Design Equations

 Delay = N * P / 2  (N is order, P is cutoff period)

 Second Order Butterworth equations:
a = exp(-1.414*/P)

b = 2*a*Cos(1.414*/P)
g = b*g[1] - a*a*g[2] + ((1 - b + a*a)/4)*(f + 2*f[1] + f[2])

 Third Order Butterworth equations: 
a = exp(-/P)
b = 2*a*Cos(1.732*/P)
c = exp(-2*/P)
g = (b + c)*g[1] - (c + b*c)*g[2] + c*c*g[3]

+ ((1 - b + c)*(1 - c) / 8)*(f + 3*f[1] + 3*f[2] + f[3])

where g is output, f is input
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14 Bar Cutoff
1, 2, & 3 Pole LowPass Filters

 Increased Lag is the penalty for 
increased smoothing

1 Pole
2 Pole

3 Pole

DM__94z.ttd 940922
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 Higher Order filters give better fidelity for 
an equal amount of lag

1 & 3 Pole LowPass Filters
Equalized for 2 Bar Lag

Three Pole Response

DM___94z.ttd 940922
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Linear Kalman Filters

 Originally used to predict ballistic trajectories
 Basic ideal is to correct the previous estimate 

using the current error to modify the estimate
 Procedure for a Linear Kalman Filter:

• Previous estimate is the EMA
• Estimate Lag error based on price change
• Multiply the price rate of change by the lag-related constant

g(z) = f(z) + (1 - )g(z - 1) + (f(z) - f(z - 1))
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Computing Kalman Coefficients

 As before, increment f() by 1 for each step of z
i - k =  *i + (1 - )*(i - k - 1) + *(i - (i -1))

=  *i + (i - k) - 1 -  *i +  *(k + 1) + 
0 =  *(k + 1) - 1 + 
= -  *(k + 1)

___K___ _____
1 (Lag) 1 - 2*
0 1 - 

-1 (Lead) 1
-2  1 + 

 Now lag is under control for any EMA constant
 Leading functions are too noisy to be useful
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Linear Kalman Filter
1 Day Lag

GC___95Q.TTD 950728

EMA  = .25

Kalman  = .5
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Nonlinear Kalman Filter

 Take EMA of price (better, a 3 Pole filter)
 Take the difference (delta) between Price and 

its EMA
 Take an EMA of delta (or a 3 Pole filter)

• Smoothing will help reduce whipsaws
• Ideally, smoothing introduces no major trend mode lag 

because delta is detrended

 Add the smoothed delta to EMA for a zero lag 
curve.

 Add 2*(smoothed delta) to EMA for a 
smoother predictive line
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Zero Lag
Nonlinear Kalman Filter Example

GC___95Q.TTD 950728

EMA   = .25

Nonlinear Kalman Response
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Theoretically Optimum
Predictive Filters

 Optimum predictive filters are solutions to the 
generalized Wiener-Hopf integral equation

• “Statistical Theory of Communication”, Y.W. Lee, John Wiley and 
Sons, 1960

 Optimum Predictive filters pertain only to the market 
cycle mode (Must use detrended waveforms)

 Two solutions are of interest to traders
• Pure predictor (noise free case)

– See “The BandPass Indicator”, John Ehlers, TASAC, 
September 1994, page 51

• Predicting in the presence of noise
– See “Optimum Predictive Filters”, John Ehlers, TASAC, June 

1995, Page 38
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Pure Predictor

 Calculations start by taking two 3 Pole Low 
Pass filters for smoothing

• Period1 = .707 * Dominant Cycle
• Period2 = 1.414 * Dominant Cycle

 Ratio of the two periods is 2:1
• The second filter has twice the lag of the first

 Take the difference of the two filter outputs
• The difference detrends the information
• The resultant is in phase with the cycle component of the 

price

 A very smooth (noise-free) replica of the cycle 
component of the price is established.  This is 
the BandPass Filter output.
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Sinewave “momentum”
phase leads by 90 degrees

“Momentum” is similar to a calculus derivative.
d (Sin(*t)) / dt =  * Cos(*t)
1/ = P/(2*) must be used as an amplitude normalizer. 
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Computing the 
Noise-Free Predictor

 Take the “momentum” of the BandPass Filter 
output (simple one day difference).

 Normalize amplitude by multiplying the 
“momentum” by  Po / (2* )

 Produce 30 degree leading function 
• Multiply normalized “momentum” by .577 (tan(30) = .577)
• Add product to BandPass Filter output 

 Reduce leading function amplitude
• Multiply by .87 to normalize vector amplitude
• Multiply again by .75 to reduce amplitude below BandPass

amplitude.
– Crossover entry signal always leads by 1/8th of a cycle
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Noise-Free Predictor
Vector Construction
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The Complete 
BandPass Indicator

The BandPass Indicator is automatically tuned in:
• MESA for Windows
• 3D for Windows
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BandPass Indicator Crossings
Give Buy/Sell Signals

GC___95J.TTD 950303
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Optimum Predictive Filter
in the Presence of Noise

 Start with RSI or Stochastic Indicator
• Provides detrended waveform
• Adjust length until the waveform resembles a sinewave

 Technique is useful only when the waveform 
has a Poisson probability distribution

• The midpoint crossings must be relatively regular

 Take an EMA of the RSI
�  = .25 is nominally correct (gives a 3 day lag)

 Subtract the EMA from the RSI to produce the 
predictor

• Remember the fundamental premise in constructing 
predictive filters?
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RSI and 
Optimum Predictive Filter

GC___95J.TTD 950303
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Zero Lag Filters

 Zero Lag filters are constructed using cycle 
theory

 A phasor accurately depicts cyclic amplitude 
and phase characteristics

 Phasors ignore the cyclic rotation and examine 
only relative lead and lag relationships

sinewave

phasor

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Zero Lag Filter Construction

 Phasor A has a lag of 
DominantCycle/16

 Phasor B has twice the 
lag of Phasor A

 Subtract B from A by 
reversing B and adding

 Resultant is detrended
leading angle Phasor C

 Vector add C to A
 Resultant is zero lag, 

non-detrended Phasor D

A
B

A

-B
C

C

A
D
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Zero Lag Filter Example

GC___95Q.TTD 950728
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A Zero Lag Filter Application

 Take a 3 Pole zero lag filter of price highs
 Take a 3 Pole zero lag filter of price lows
 Calculate statistics of the high and low 

variations
• Add 2 Standard Deviations to the Highs Zero Lag Filter
• Subtract 2 Standard Deviations to the Lows Zero Lag Filter

 Resultant channels can be used as stop values 
for a stop-and-reverse system

 Remove the +/- Std Deviations near cycle turns
 SUMMIT for Windows uses this procedure
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SUMMARY

 What you have learned:
• How to relate filter lag to EMA constant
• How to compute Higher Order Butterworth Filters
• How to control lag using a Linear Kalman Filter
• How to compute a Nonlinear Kalman Filter

– Possible start for a crossover system
• How to compute Optimum Predictive Filters for the cycle 

mode
– Pure Predictor (Noise-Free, using higher order filters)
– With RSI or Stochastics

• How to compute a zero lag filter


